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Abstract Modern theoretical descriptions of inelastic

scattering often require large numerical computational

resources due to the complexity of the calculations in-

volved. One of the most precise multi-step direct re-

action approaches makes use of transition potentials

obtained with sophisticated nuclear structure models.

These potentials are then used in DWBA or Coupled-

Channel Reaction (CCR) codes to provide numerical

values for the cross section. Here we demonstrate how

the complexity of such calculations might be reduced to

permit easy calculation using the ECIS code, thus pro-

viding an alternative to a full computation when this

becomes unfeasible even for large computers. We have

studied the transition form factors within the Random

Phase Approximation, where these are obtained as lin-

ear combinations of particle-hole states. At moderate

to high excitation energies, where interference effects

tend to disappear, we have proposed an independent

particle-hole formalism in which particle-hole states are

spread in energy with an appropriate strength function

obtained from the RPA. The effects of more complex

modes such as 2p-2h are simulated with widths calcu-

lated in a semi-classical context. Here, we verify the

validity of our approximations for high-energy proton-

induced reactions on 90Zr target. Our calculations pro-

vide a good description of the reaction data and point

toward a simplification of the description of nucleon-

induced reactions based on averages of microscopic de-

tails of the projectile-target interaction.
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1 Introduction

Nuclear cross sections are key ingredients for a vari-

ety of applications from nucleosynthesis, radioisotope

production for medical treatments and nuclear power

plant strategies [1–3]. Theoretical reactions models are

required to supplement experimental data values and

sometimes to even provide them in cases where, for ex-

ample, the target is a short-lived or rare isotope or when

no experimental facility can perform measurements in

the desired energy range.

Although inelastic multi-step direct reaction scattering

models have been developed for many years, a com-

plete description that can be directly implemented nu-

merically is difficult to achieve. For nucleon induced

reactions, simpler models introduce limited information

about the nuclear structure of the target while more so-

phisticated approaches, when available, quickly reach a

high level of complexity.

A successful approach relies on the combination of de-

tailed nuclear structure information that can be in-

troduced into a detailed reaction description, such as

the DWBA or coupled channel theory. The RPA has

been successfully employed in calculations of nucleon-

induced reactions ([4,5], and for surrogate studies [6,

7]). The price of such an approach is the need for large

computers to execute each step of a reaction calculation

in combinations with detailed nuclear structure calcu-

lations.

In this work, we show how RPA form factors can be

simplified at medium to high excitation energy by sub-

stituting statistical averages for a detailed microscopic

description of the transition densities. Cross sections

can be obtained for independent particle-hole configu-

rations and then spread in energy according to the sta-

tistical distributions obtained from an analysis of the



2

microscopic description.

This work is organized as follows: We present a short in-

troduction to the theoretical formalism. Next, the tran-

sition densities and the averaging scheme are presented.

The numerical cross sections obtained and the conclud-

ing remarks are given in the results and conclusion sec-

tions, respectively.

2 Theoretical Formalism

For the sake of compactness, we only provide a descrip-

tion of the most necessary components of the calcula-

tions, while references are given for completeness. We

write the radial coupled channel equation as
{
d2

dr2
− li(li + 1)

r2
− 2µi

h̄2
Uii(r) + k2i

}
ψi(r)

=
∑

f 6=i

2µ

h̄2
Uif (r)ψf (r) ,

(1)

where Uif represents the effective potential for a tran-

sition between the states i and f .

The transition potential Uif is induced by the interac-

tion between the projectile and the nucleons in the tar-

get nucleus. For inelastic scattering, one usually writes

the transitions from an initial ground |0〉 to a final ex-

cited state |f〉 as

Uf←0(~r) =
∑

n

〈f |Veff (~r − ~rn)|0〉 (2)

where ~rn represents the position of the nucleons in the

target. We can connect a nuclear structure model to

this formalism by simply casting the equation above

into a folding-like structure

Uf←0(~r) =

∫
d~rtVeff (~r − ~rt)ρf0(~rt), (3)

where

ρf0(~rt) = 〈f |
∑

n

δ(~rt − ~rn)|0〉, (4)

is the one-body transition density [8].

The transition potentials (3) can be used as inputs in

the ECIS reaction code [9,10] for coupled channels and

DWBA reaction cross section calculations.

In large-scale fully microscopic calculations, the effec-

tive interaction Veff is usually taken to be a central

interaction [5]. Here, we simplify this picture by assum-

ing a contact-like interaction Veff (~r−~rt) = v0δ(~r−~rt),
which allow us to obtain the transition potentials (3)

directly from the transition density,

Uf0(~r) = v0ρf0(~r). (5)

In the next section we present our proposal for simplify-

ing the transition densities, or transition form factors,

based on the RPA framework. Our goal is to reduce

the complexity of the non-collective RPA modes and

represent them as a statistical response function of in-

dependent p-h amplitudes spread over an energy range

dictated by the RPA calculation.

3 Particle-hole form factors

For this work, we have used the RPA code by Colò et al

[11] to obtain the energy spectra as well as the quanti-

ties necessary to construct the transition potentials. In

what follows, we provide a brief description of the RPA

and the particle-hole amplitudes.

The RPA excited states are obtained from the action

of the phonon creation operator

θ̂†x =
∑

mi

Xx
miÂ

†
mi − Y xmiÃmi, (6)

in the RPA ground state

|RPAx〉 = θ̂†x|0̃〉, (7)

where Â† (Ã) represents a particle-hole (time-reversed)

creation operator. The indices m,n (i, j) stand for the

HF (Hartree-Fock) single-particle orbitals, which can

be particle or holes with energies above or below the

Fermi level, respectively. The RPA amplitudes and ex-

citation energies are obtained by diagonalization of the

eigenvalue problem

(
A B

−B −A

)(
X

Y

)
= Ex

(
X

Y

)
, (8)

for a given value of the total angular momentum and

parity Jπ. The RPA matrix elements read

Ami,nj = (Em − Ei)δmnδij + 〈mj|V |in〉
Bmi,nj = 〈mn|V |ij〉 ,
and are obtained self-consistently with same Skyrme

interaction (Sly5 [12,13]) used in the mean field calcu-

lations.

The radial transition density from the ground state to

an RPA excited state can be directly obtained from the

RPA code and is given by

ρxJ(r) =
1√

2J + 1

∑

mi

Cxmi〈m||YJ ||i〉
um(r)ui(r)

r2
. (9)

where Cxmi = (Xx
mi+Y xmi) represent the contribution of

the particle-hole basis to the RPA states.

For the energy modes above the low-energy collective

states, we have found that the coefficients Cxmi behave
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statistically [14] and can be well represented by a Breit-

Wigner distribution centered around the non-interacting

p-h energy Emi. In this energy region, one expects the

transition density to vanish when averaged over a suffi-

ciently large range of excitation energy 2∆Ex (for each

value of the angular momentum),

ρx(r) ≡ 1

N

∫ Ex+∆Ex

Ex−∆Ex
dExρ

x
J(r) ≈ 0, (10)

where N is the number of states within the defined en-

ergy bin around Ex. This occurs as a consequence of

the randomness of the phases present in the eigenvec-

tor coefficients Cxmi. To verify this property, in Figure 1

we show the averaged transition density for different ex-

citation energies. We performed an arithmetic average

in a bin of ∆Ex = 1.5 MeV of each excited state. One

can note that the randomness assumption is not valid

in the lower energy region of the spectra for states, such

as the lowest 2+ state, that are known to be collective.

As the excitation energy increases, the averaged tran-

sition density tends to vanish. When the randomness

0 5 10 15 20 25 30
Ex (MeV)

0

1

2

3

4

5

∫
ρ x

(r
)r

2 dr

J = 1−

J = 2+

Fig. 1 Averaged RPA transition density along the excita-
tion energy spectrum of 90Zr for two values of the angular
momentum and parity.

hypothesis (10) is satisfied, the p-h contributions can

be represented by a Breit-Wigner distribution [14],

|Cxmi|2
∆Ex

≡ fBW (Ex, Eni) =
1

πΓ

[
Γ 2

(Ex − Eni)2 + Γ 2

]

(11)

where the spreading width Γ accounts for the mixing of

different p-h configurations. We will extend this later in

order to account for the effects of damping into 2p-2h

modes.

We show in Figure 2 a representation of the level struc-

ture of the RPA states. The vertical dark lines mark

the position of the RPA energies along the horizon-

tal energy axis. The low energy states are usually well

spaced and located at energy values near or below the

lower bound of the p-h basis (not shown). For the higher

energy modes, the positions of the states, on average,

tend to coincide with those of the unperturbed p-h ba-

sis states. In the same figure, we also show the BW

strength distribution of 1p-1h nature into selected states

along the spectrum. The strength of the higher energy

modes is well represented by a BW distribution (Eq.11).

The effects of collectivity over the enire RPA spectrum

can be partially taken in to account by using an energy

dependent spreading width γ1p−1h(E) [14].

0 20 40
E [MeV]

collectivity

Fig. 2 Top: Schematic energy level structure of RPA states.
At higher energies, the RPA states are well approximated by
simple p-h modes centered around the non-interacting energy
modes. Bottom: The strength contribution of the higher en-
ergy modes of the energy spectrum can be well represented
by Breit-Wigner distributions (details in the text).

Taking advantage of the statistical properties of the

RPA states, we use form factors (transition densities)

for simple p-h configurations in the reaction formal-

ism to obtain individual cross sections, σph. using the

ECIS code. These are then distributed along the en-

ergy spectrum according to an extended Breit-Wigner

ditribution,

σ(E) =
∑

ph

∫ E+∆

E−∆
fBW (E,Eph)σphdE, (12)

with

Γ (E) = γ1p−1h(E) + γ2p−2h(E) + γ↑(E) (13)

where the first of the two widths spreads the individ-

ual cross section over the 1p-1h components. This is

parametrized as γ1p−1h(E) = a
√
E+bE e

−(E−E0)2

2σ2 with

a = 4.2×10−2 MeV2, b = 10−1, E0 = 6 MeV and σ = 5

MeV for 90Zr [14]. The 2p-2h spread width, γ2p−2h, is
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obtained using a semi-classical exciton-like picture, by

taking into account the average squared matrix element

and the density of available states (see Appendix). The

escape width γ↑ takes into account the decay of the 1p-

1h states by particle emission. The summed spreading

plus escape width is used to distribute the cross sections

calculated with ECIS among the bins of excitation en-

ergy spectrum E ± ∆. When using RPA form factors

only the 2p-2h spreading width and the escape widths

need to be employed. One notes that in the context of

our model the p-h mixing can be turned off since in the

limit γ → 0

lim
γ→0

∫
fBW (E,Eph)dE = δ(E − Eph). (14)

Without loss of generality, we use 90Zr to exemplify our

approach and to compare the calculated cross sections

with experimental data. In the next section, we will

present the results for cross section calculations per-

formed with the ECIS code [10,9] for proton-induced

inelastic scattering at 80 MeV of incident energy.

4 Cross Section Results

We parameterize the optical potential representing the

nuclear interaction between the incoming proton and

the target nucleus in terms of Wood-Saxon functions

UN (r) = − (V0 + iW0)

1 + exp [(r −R)/a0]
, (15)

where R = r0A
1/3 is the target radius. The necessary

parameter values are obtained from the volume terms of

the Koning-Delaroche optical potential [15]. The values

obtained are V0 = 32.13 MeV and W0 = 8.36 MeV for

the strengths of the real and imaginary parts, respec-

tively, while for the geometrical parameters r0 = 1.21

fm and a0 = 0.66 fm−1 are used. The Coulomb term is

taken as a uniformly charged sphere with reduced ra-

dius rc = 1.25 fm. Our goal is to obtain a relatively good

description of forward scattering events, since backward

components tend to be small and involve two-step am-

plitudes, mechanisms that go beyond the formalism de-

veloped in this work, but which should be addressed in

future studies.

Figure 3 presents the angular distribution for proton

elastic scattering on 90Zr at 80 MeV normalized to the

Rutherford cross section. Although were are not able

to reproduce all of the oscillatory details of the distri-

bution, the overall is in good agreement with the ex-

perimental data. Improvements could be obtained by

a fully implementation of the Koning-Delaroch optical

potential.

Turning to the inelastic cross sections, we present in

Fig.4 the angular distributions obtained for the individ-

ual p-h cross sections (12) using transition potentials

with v0 = 255 MeV as well a sthe spreading widths

described above. For comparison we also show calcula-

tion performed with the RPA form factors. Both cal-

culations provide results that follow the trend of the

experimental data very well. One can see that both p-h

and the RPA approaches provide similar angular distri-

butions. As we increase the excitation energy (decrease

outgoing energy), the cross section at backward angles

is increasingly underestimated by our calculations. This

is almost certainly due to the lack of multi-step excita-

tion modes, which become more and more important as

the excitation enegy increases but are not taken into ac-

count here. In Figure 5, we show the differential cross

20 40 60 80
θ [deg]

10−1

100

σ
(θ

)/
σ R

Elastic

Fig. 3 Proton elastic scattering cross sections on 90Zr (nor-
malized to Rutherford cross section) at 80 MeV incident en-
ergy. The points represent experimental data taken from [16].

section at a fixed angle θ = 35◦ as a function of the

outgoing proton energy. The reaction calculations were

performed in a DWBA reaction model and take into ac-

count over 2000 form factors with angular momentum

up to J = 10 with natural parity. The solid lines are

the result of the statistical particle-hole model spread

over the energy spectra using the procedure explain the

previous section. The dashed lines were obtained with

RPA form factors within the same DWBA basis. At

lower excitation energies only the full RPA form factors

can reproduce the reaction cross section strength. This

is the region where interference effects play a role and

the randomness assumption breaks down. For higher

excitation energies, the density of p-h states increases

and our model provide an excellent description of the

experimental data and furnishes results very similar to

those of the RPA. The large density of p-h states com-

pensates the weak overlap of the individual states in

the form factors. Before closing, we want to mention
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0 20 40 60 80 100 120 140 160 180
θ [deg]

10−4

10−2

100
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d2 σ
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dE
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sr
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Fig. 4 Double differential angular distributions of protons
incident on 90Zr at 80 MeV incident for four different out-
going proton energies. Dashed and solid lines represent cal-
culations with the RPA and independent p-h transition den-
sities, respectively. The points represent experimental data
taken from [17]. Both the data and the theoretical results are
shifted starting from the bottom.

that although we could perform calculations at even

higher excitation energies, one has to be careful with

the different mechanisms and channels that are present

in those energies. The number and complexity of the

modes excited in the process increase with energy and

should be carefully taken into account.

5 Concluding Remarks

In this paper we developed a reaction model based on

the statistical properties of higher energy RPA modes.

When randomness assumption is valid, particle-hole ex-

citation coefficients can be well represented by a Breit-

Wigner distribution centered at the non-interacting com-

ponents. We employed p-h form factors to obtain cross

sections in DWBA reaction calculations using the ECIS

code [9,10].

Our model can be compared to the work by Dupuis

[4] where a fully microscopic RPA with a Gogny inter-

action is employed. There, a phenomenological Gaus-

sian distribution is used to spread the cross sections

obtained from the RPA states as an attempt to estimate

the damping to more complex configurations. Here, we

initially spread the contribution of particle-hole modes

with a distribution inspired purely by the RPA results

[14]. The effects of decay to incoherent 2p-2h modes

and emission are obtained in a semi-classical picture

and taken into account in the spreading width.

In the future, further improvements to our calculations

should be taken into account, as for example a more

complete description of the optical potential. Also, a

combination of different distributions could be used to

better represent the lower collective energy states [18].

This could provide an effective means of accounting for

the large strength of collective excitation cross sections

at low excitation energies.

We would like to briefly comment on the Breit-Wigner

response function we obtain for the higher energy RPA

modes. In an extremely interesting numerical study of

the nuclear shell model, Frazier, Brown and Zelevin-

sky[19] have shown that the spreading of a typical nu-

clear state has a Breit-Wigner form in the case of weak

coupling, which transforms with the coupling strength

to a Gaussian form in the physical case of strong cou-

pling. Our response function display a Breit-Wigner

form because it does not refer to typical (equilibrated)

nuclear states but to 1p-1h configurations excited in a

direct reaction. By comparing reaction times and equili-

bration times, Nishioka, Weidenmüller and Yoshida[20]

argued that the initial stages of a multi-step direct re-

action occur on a time scale so much smaller than the

typical equilibration time of a nuclear state that a sud-

den approximation to the excitation could be justified.

A semiclassical numerical study by Pompeia and Carl-

son[21] corroborated their arguments. Thus the Breit-

Wigner form of the response function is due to the rel-

ative weakness of the interaction when restricted to the

1p-1h states excited in the reaction. The spreading of

these states due to incoherent excitation of 2p-2h modes

or particle emission is part of the equilibration process

that occurs on a longer time scale, after the direct re-

action has taken place.

Our principal objective here was to verify our approach

before extending it to two-step amplitudes. Such an ex-

tension would address, among other features, the par-

ticles inelastically scattered to more backward angles

in multi-step collisions. Modes involving 2p-2h config-

urations could be obtained through a two-step RPA-

like process, consistent with the sudden approximation

described in the preceding paragraph. Such excitation

modes could be simplified to well defined distributions

and their cross sections obtained directly from the ECIS

code. We believe this work is thus an important step

towards such a simpler approach to multi-step direct

excitation processes.

Before closing, we wish to pay our respects to Dr.

Jacques Raynal, author of the code ECIS, and to whom

we dedicate this work. Without his lifetime of dedica-

tion to the study of direct reaction processes and the

development of ECIS, studies such as this one would

not be possible.

Appendix

The effects of transitions to incoherent 2p-2h modes can

be estimated by the product of an averaged value of the
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Fig. 5 (a) Double differential proton emission spectrum at θ = 35◦ for protons incient on 90Zr at 80. Dashed and solid lines
represent calculations with the RPA and the independent p-h transition densities, respectively. Red diamonds represent the
experimental data taken from [17]. (b) The statistical assumption of the p-h model find its limit in the collective low energy
part of the spectrum. The cross sections for each p-h and RPA state are shown as blue and orange points, respectively (color
online).

squared transition matrix element times the density of

available 2p-2h states ω(E),[22]

γ2p2h(E) = 2πM2ω(E), (16)

where we use a semi-empirical parameterization of the

residual interaction proposed by Koning and Duijvestijn

[23] for the average squared transition matrix element,

M2 =
1

A3

[
6.8 +

4.2× 105

(E/2 + 10.7)3

]
(17)

with E being the excitation energy and A the target

mass. The density of available 2p-2h states is obtained,

following Cline and Blann (with p = 2 and h = 2)[22,

24], as

ω(E) =

{
(gE−1)2

6E gE > 1

0 gE < 1,
(18)

where g = A/15 is the average single-particle level den-

sity [23]. We approximate the escape widths, γ↑n and γ↑p ,

as

γ↑ (E) =
(2s+ 1)m

π2h̄2
πR2 (E −B − VB)

2

2gE
(19)

where m is the nucleon mass, s = 1/2 is the nucleon

spin, Bn and Bp are the neutron and proton separation

energies, the nuclear radius is taken to be R = 1.2A1/3

and the emission barrier is taken to be 0 for neutrons

and VB = 1.44 ∗ Z/(1.25A1/3) for protons.
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